Compressive Sampling of Swallowing Accelerometry Signals Using Time-Frequency Dictionaries Based on Modulated Discrete Prolate Spheroidal Sequences
نویسندگان
چکیده
Monitoring physiological functions such as swallowing often generates large volumes of samples to be stored and processed, which can introduce computational constraints especially if remote monitoring is desired. In this article, we propose a compressive sensing (CS) algorithm to alleviate some of these issues while acquiring dual-axis swallowing accelerometry signals. The proposed CS approach uses a time-frequency dictionary where the members are modulated discrete prolate spheroidal sequences (MDPSS). These waveforms are obtained by modulation and variation of discrete prolate spheroidal sequences (DPSS) in order to reflect the time-varying nature of swallowing acclerometry signals. While the modulated bases permit one to represent the signal behavior accurately, the matching pursuit algorithm is adopted to iteratively decompose the signals into an expansion of the dictionary bases. To test the accuracy of the proposed scheme, we carried out several numerical experiments with synthetic test signals and dual-axis swallowing accelerometry signals. In both cases, the proposed CS approach based on the MDPSS yields more accurate representations than the CS approach based on DPSS. Specifically, we show that dual-axis swallowing accelerometry signals can be accurately reconstructed even when the sampling rate is reduced to half of the Nyquist rate. The results clearly indicate that the MDPSS are suitable bases for swallowing accelerometry signals.
منابع مشابه
Compressive Sensing of Analog Signals Using Discrete Prolate Spheroidal Sequences
Compressive sensing (CS) has recently emerged as a framework for efficiently capturing signals that are sparse or compressible in an appropriate basis. While often motivated as an alternative to Nyquist-rate sampling, there remains a gap between the discrete, finite-dimensional CS framework and the problem of acquiring a continuous-time signal. In this paper, we attempt to bridge this gap by ex...
متن کاملApproximating Sampled Sinusoids and Multiband Signals Using Multiband Modulated DPSS Dictionaries
Many signal processing problems—such as analysis, compression, denoising, and reconstruction—can be facilitated by expressing the signal as a linear combination of atoms from a well-chosen dictionary. In this paper, we study possible dictionaries for representing the discrete vector one obtains when collecting a finite set of uniform samples from a multiband analog signal. By analyzing the spec...
متن کاملThe effects of compressive sensing on extracted features from tri-axial swallowing accelerometry signals.
Acquiring swallowing accelerometry signals using a comprehensive sensing scheme may be a desirable approach for monitoring swallowing safety for longer periods of time. However, it needs to be insured that signal characteristics can be recovered accurately from compressed samples. In this paper, we considered this issue by examining the effects of the number of acquired compressed samples on th...
متن کاملReconstruction of Frequency Hopping Signals From Multi-Coset Samples
Multi-Coset (MC) sampling is a well established, practically feasible scheme for sampling multiband analog signals below the Nyquist rate. MC sampling has gained renewed interest in the Compressive Sensing (CS) community, due partly to the fact that in the frequency domain, MC sampling bears a strong resemblance to other sub-Nyquist CS acquisition protocols. In this paper, we consider MC sampli...
متن کاملLinear Prediction of Bandpass Signals Based on past Samples
This paper describes methods of computation of prediction coefficients for bandpass signals which provide highly accurate predictions from past samples of a signal based on the sampling rate, the bandwidth, and the center frequency of the signal. Two methods are described, one based on solving a matrix system and another on eigenvectors related to and extending the Discrete Prolate Spheroidal S...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- EURASIP J. Adv. Sig. Proc.
دوره 2012 شماره
صفحات -
تاریخ انتشار 2012